
LabVIEW TM

Simulation Module User Manual

LabVIEW Simulation Module User Manual

April 2004 Edition
Part Number 371013A-01



Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599, 
Canada (Calgary) 403 274 9391, Canada (Ottawa) 613 233 5949, Canada (Québec) 450 510 3055, 
Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530, China 86 21 6555 7838, 
Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 385 0 9 725 725 11, 
France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427, India 91 80 51190000, 
Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400, 
Malaysia 603 9131 0918, Mexico 001 800 010 0793, Netherlands 31 0 348 433 466, 
New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210, 
Russia 7 095 783 68 51, Singapore 65 6226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197, 
Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227, 
Thailand 662 992 7519, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment 
on the documentation, send email to techpubs@ni.com.

© 2004 National Instruments Corporation. All rights reserved.



 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects 
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National 
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives 
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be 
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before 
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are 
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical 
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent 
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. 
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF 
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR 
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY 
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including 
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments 
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover 
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or 
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, 
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, 
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National 
Instruments Corporation.

Trademarks
LabVIEW™, National Instruments™, NI™, ni.com™, NI-CAN™, and NI-DAQ™ are trademarks of National Instruments Corporation.

MATLAB®, Simulink®, and Stateflow® are registered trademarks of The MathWorks, Inc.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file 
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF 
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN 
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT 
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE 
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY, 
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS 
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND 
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL 
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR 
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE 
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD 
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD 
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID 
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO 
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. 
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING 
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN 
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL 
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING 
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE 
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, 
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.



© National Instruments Corporation v LabVIEW Simulation Module User Manual

Contents

About This Manual
Conventions ...................................................................................................................vii
Related Documentation..................................................................................................viii

Chapter 1
Introduction to Modeling

Modeling Dynamic Systems ..........................................................................................1-1
Determining Model Complexity......................................................................1-2
Developing the Model .....................................................................................1-2

Physical Modeling ............................................................................1-2
Lumped versus Distributed Parameter Models ..................1-2
Linear versus Nonlinear Models.........................................1-2
Time-Variant versus Time-Invariant Models .....................1-3
Continuous versus Discrete Models ...................................1-3

Empirical Modeling ..........................................................................1-3
Introduction to Ordinary Differential Equation Solvers ................................................1-3
Introduction to Rapid Control Prototyping and Hardware-in-the-Loop 

Configurations.............................................................................................................1-4

Chapter 2
Simulation Environment

Simulation Diagram.......................................................................................................2-1
Simulation Loop ..............................................................................................2-1
LabVIEW VIs, Functions, and Structures.......................................................2-2
Feedback Cycles..............................................................................................2-3
Setting Simulation Parameters ........................................................................2-5

Simulation Time Parameters .............................................................2-7
Continuous Solver Parameters ..........................................................2-7
Discrete Solver Parameters ...............................................................2-8

Setting Timing Parameters ..............................................................................2-9
LabVIEW Real-Time Module for ETS Targets................................2-9
LabVIEW Real-Time Module for RTX Targets...............................2-9
Off-Line Simulations ........................................................................2-10

Simulation Functions .....................................................................................................2-10
Discrete Systems Functions.............................................................................2-12
Displaying Dynamic Content on Expandable Nodes ......................................2-12
Flipping Function Direction ............................................................................2-13
Programmatically Stopping a Simulation........................................................2-14



Contents

LabVIEW Simulation Module User Manual vi ni.com

Simulation Subsystems.................................................................................................. 2-14
Creating a Simulation Subsystem ................................................................... 2-14
Stand-Alone Subsystems................................................................................. 2-15
Subsystems within a Simulation Diagram ...................................................... 2-15
Linearizing a Subsystem ................................................................................. 2-16

Simulation Debugging................................................................................................... 2-17

Chapter 3
Real-Time Applications

Determinism .................................................................................................................. 3-1
Case Study: Rapid Control Prototype and Hardware-in-the-Loop Simulation ............. 3-2

Off-Line Simulation........................................................................................ 3-2
Rapid Control Prototype Implementation ....................................................... 3-3
Hardware-in-the-Loop Implementation .......................................................... 3-4
Discrete Behavior............................................................................................ 3-4

Chapter 4
Ordinary Differential Equation Solvers

Simulation Discontinuities ............................................................................................ 4-2
ODE Solver Accuracy and Order .................................................................................. 4-2
Variable Step-Size versus Fixed Step-Size ODE Solvers ............................................. 4-3
Single-Step versus Multi-Step ODE Solvers................................................................. 4-3
Stiff ODE Solvers.......................................................................................................... 4-4
LabVIEW Simulation ODE Solvers.............................................................................. 4-4

Chapter 5
Simulink Translator

Converting Simulink Models into LabVIEW Code ...................................................... 5-1
Common Warnings........................................................................................................ 5-2

Appendix A
Technical Support and Professional Services

Glossary



© National Instruments Corporation vii LabVIEW Simulation Module User Manual

About This Manual

The LabVIEW Simulation Module User Manual describes how to use the 
simulation environment, Simulation functions, and simulation subsystems. 
Refer to the LabVIEW Help for more information about specific Simulation 
Module palettes, functions, and dialog box options.

Use this manual to learn how to use the LabVIEW Simulation Module in 
real-time applications and how to use the Simulink Translator to convert 
Simulink® model (.mdl) files into LabVIEW VIs. This manual also 
describes factors to consider when you develop a model and factors to 
consider when you select an ordinary differential equation (ODE) solver to 
use for a simulation.

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options 
to a final action. The sequence File»Page Setup»Options directs you to 
pull down the File menu, select the Page Setup item, and select Options 
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such 
as menu items and dialog box options. Bold text also denotes parameter 
names; dialog box names; and pages, sections, and components of dialog 
boxes.

italic Italic text denotes variables, emphasis, or a cross reference. This font also 
denotes text that is a placeholder for a word or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the 
keyboard. This font is also used for the proper names of disk drives, paths, 
directories, programs, subprograms, subroutines, device names, functions, 
operations, variables, filenames, and extensions.



About This Manual

LabVIEW Simulation Module User Manual viii ni.com

Related Documentation
The following documents contain information that you might find helpful 
as you read this manual:

• LabVIEW Control Design Toolkit User Manual

• LabVIEW Execution Trace Toolkit User Guide

• LabVIEW Help

• LabVIEW Real-Time Module User Manual

• LabVIEW User Manual

• NI-CAN Hardware and Software Manual

• NI-DAQmx Help



© National Instruments Corporation 1-1 LabVIEW Simulation Module User Manual

1
Introduction to Modeling

With the LabVIEW Simulation Module, you can investigate the 
time-dependent behavior of complex engineering systems. Use the 
Simulation Module to model and simulate any systems that differential 
and/or difference equations can characterize. Such systems include, but 
are not limited to, mechanical, electrical, fluid, and thermodynamic 
engineering systems. The Simulation Module provides analysis functions 
for both linear and nonlinear systems.

With the Simulation Module, you can create simulations to lower product 
development costs by accelerating product development, providing higher 
quality, and reducing associated risk. You also can create simulations to 
provide insight into the behavior of systems that you cannot replicate 
conveniently in the laboratory.

Note This document is not intended to provide a comprehensive discussion of modeling. 
Refer to the following books for more information about modeling: Modern Control 
Systems1, Feedback Control of Dynamic Systems2, Digital Control of Dynamic Systems3, 
Control Systems Engineering4, and Modern Control Engineering5.

Modeling Dynamic Systems
A model is a set of equations that characterizes the behavior of a system. 
A dynamic system is a system whose behavior varies with time.

Consider the following issues when you develop a dynamic system model.

1   Dorf, Richard C., and Robert H. Bishop. Modern Control Systems, 9th ed. Upper Saddle River, NJ: Prentice-Hall, Inc., 2001.
2   Franklin, Gene F., J. David Powell, and Abbas Emami-Naeini. Feedback Control of Dynamic Systems, 4th ed. Upper Saddle 

River, NJ: Prentice Hall, 2002.
3   Franklin, Gene F., J. David Powell, and Michael L. Workman. Digital Control of Dynamic Systems, 3rd ed. Menlo Park, CA: 

Addison Wesley Longman, Inc., 1998.
4   Nise, Norman S. Control Systems Engineering, 3rd ed. New York: John Wiley & Sons, Inc., 2000.
5   Ogata, Katsuhiko. Modern Control Engineering, 4th ed. Upper Saddle River, NJ: Prentice-Hall, Inc. 2001.



Chapter 1 Introduction to Modeling

LabVIEW Simulation Module User Manual 1-2 ni.com

Determining Model Complexity
When you develop a system model, you must decide what to include in 
the model and how complex the model will be. For example, if you are 
developing a model of a vehicle shock system, you might take into account 
engine vibration or passenger movement in the vehicle. However, because 
these effects are minimal, you do not need to include them in the model. By 
limiting the complexity of the model, you can reduce model development 
and validation effort.

Developing the Model
You can use physical laws or experimental data to develop a model. The 
following sections describe features of both the physical modeling and the 
empirical modeling techniques.

Physical Modeling 
The laws of physics define the physical model of a system. The following 
sections describe various classifications and features of physical models.

Lumped versus Distributed Parameter Models
If you can use an ordinary differential equation to describe a physical 
system, the resulting model is a lumped parameter model. If you can use 
partial differential equations to describe a system, the resulting model is 
a distributed parameter model.

Linear versus Nonlinear Models
A linear model obeys the principle of superposition. The following 
equations are true for linear models:

y1 = f(x1)

y2 = f(x2)

Y = f(x1 + x2) = y1 + y2

A differential equation is linear if the coefficients are constant or change 
only with the independent variable. Often this independent variable is time.

A nonlinear model does not obey the principle of superposition. Nonlinear 
effects that are observed in real-world systems include, but are not limited 
to, saturation, dead-zone, friction, backlash, and quantization effects; 



Chapter 1 Introduction to Modeling

© National Instruments Corporation 1-3 LabVIEW Simulation Module User Manual

relays; switches; and rate limiters. All real-world systems are nonlinear, 
though you can linearize the model to simplify a design or analysis task.

Time-Variant versus Time-Invariant Models
Dynamic models are time-variant or time-invariant. If the parameters of 
a model do not change with time, then the model is a time-invariant model. 
If the parameters change with time, then the model is a time-variant model. 
For example, you can use a time-variant model to describe an automobile. 
As fuel burns, the mass of the vehicle changes with time. 

Continuous versus Discrete Models
Dynamic models can be either continuous or discrete. Continuous models 
represent real-world signals that vary continuously with time. For example, 
a model that describes the orbital motion of a satellite is a continuous 
model. You can use differential equations to describe continuous systems. 
Discrete models represent signals that are sampled in time at discrete 
intervals. For example, a model that controls the altitude of the satellite is 
a discrete model. You can use difference equations to describe discrete 
systems. In either case, the equations that describe the system can be linear 
or nonlinear and time-variant or time-invariant.

Empirical Modeling
Empirical models use data gathered from experiments to define the 
mathematical model of a system. To some degree, even physical models 
are empirical because you determine experimentally certain constants used 
to develop the model. A variety of empirical modeling methods exist. One 
method of empirical modeling uses tables of experimental data that 
represent the system you want to model. Another method for developing 
models uses system identification methods. System identification methods 
use measured data to create differential or difference equation 
representations that model the data. You can use LabVIEW System 
Identification Toolkit VIs to create models using system identification 
methods. If you have the System Identification Toolkit installed, refer to 
the LabVIEW Help for more information about these VIs.

Introduction to Ordinary Differential Equation Solvers
You can use a system of differential equations to mathematically describe 
dynamic systems. You must solve these equations to observe the behavior 
of the simulated system. The Simulation Module includes ODE solvers, 
which can solve these equations. 



Chapter 1 Introduction to Modeling

LabVIEW Simulation Module User Manual 1-4 ni.com

ODE solvers use methods to approximate the solution to a differential 
equation. The ODE solvers implement these methods in a variety of ways, 
each with various strengths and weaknesses. Defining characteristics of an 
ODE solver include its accuracy (or order), stability, use of a fixed time step 
versus a variable time step, and use of a single step versus multiple steps.

Difficulties can arise when you solve a differential equation in a system 
whose dynamics are described by widely differing time constants. Such a 
system is known as a stiff system. You must give stiff systems special 
consideration when you choose an integration method. Refer to Chapter 4, 
Ordinary Differential Equation Solvers, for more information about ODE 
solvers.

Introduction to Rapid Control Prototyping and 
Hardware-in-the-Loop Configurations

Design and test engineers use rapid control prototyping (RCP) and 
hardware-in-the-loop (HIL) to evaluate and validate system components 
while they develop complex control systems. In an RCP configuration, you 
test a control algorithm with the actual physical system the algorithm 
controls. The control algorithm runs as part of the software model on 
real-time prototyping hardware. You can verify the control algorithm with 
the actual physical plant before deploying the algorithm to the actual 
controller hardware. In an HIL configuration, you test a controller 
implementation, with the actual controller hardware, using software 
models to simulate the plant. In both the RCP and HIL configurations, the 
physical components tested respond to the simulated signals as though they 
were operating in the real system.

Replacing parts of the system with computers running software simulations 
reduces the size and complexity of the application, increases the flexibility 
and rate of running many different tests and test scenarios, and reduces 
system development costs. For example, with RCP, you can evaluate 
control logic without incurring the costs associated with generating target 
code and using controller hardware. Refer to Chapter 3, Real-Time 
Applications, for more information about RCP and HIL.



© National Instruments Corporation 2-1 LabVIEW Simulation Module User Manual

2
Simulation Environment

You can use the simulation environment within LabVIEW to design system 
models for simulation in typical block diagram form. As you build a 
simulation model, notice that the simulation diagram looks different than 
other LabVIEW diagrams. The simulation diagram has a distinct yellow 
background, and Simulation function icons have purple backgrounds, 
which distinguish them from other LabVIEW features. 

Simulation Diagram
The simulation diagram graphically displays the simulation model that an 
application must evaluate at each time step of the simulation. You place a 
dynamic element and other logical or arithmetic code on the simulation 
diagram to define the model the ODE solver evaluates at each time step.

Note Dynamic elements include the following Simulation functions: Integrator, State 
Space, Transfer Function, Zero-Pole-Gain, Discrete Integrator, Discrete State Space, 
Discrete Transfer Function, and Discrete Zero-Pole-Gain.

The simulation diagram uses an ODE solver to compute the behavior of a 
model over time. Given the behavior of the model at time t – dt, the ODE 
solver determines the behavior and outputs of the model at time t, where dt 
is the time step of the ODE solver. Depending on the type of ODE solver 
the simulation diagram uses, the ODE solver might evaluate a simulation 
diagram several times during a single time step. 

Simulation Loop
Because simulations naturally run as loops that iterate over multiple time 
steps, the Simulation Module includes the Simulation Loop. The 
Simulation Loop, shown in Figure 2-1, executes the simulation diagram 
until it reaches the simulation final time or until the Halt Simulation 
function programmatically stops the execution.



Chapter 2 Simulation Environment

LabVIEW Simulation Module User Manual 2-2 ni.com

Figure 2-1.  Simulation Loop

You must place all Simulation functions, except the Set Diagram 
Parameters function, and all simulation subsystems within a Simulation 
Loop or within another simulation subsystem. Refer to the Simulation 
Functions section for information about these functions.

You can wire the Set Diagram Parameters function to the optional 
parameters terminal of the Simulation Loop, shown at left, to 
programmatically configure simulation parameters for the enclosed 
simulation diagram. If the parameters terminal is unwired, you can 
right-click the border of the Simulation Loop and select Configure 
Simulation Parameters from the shortcut menu to configure the 
simulation parameters using the Simulation Parameters dialog box. Refer 
to the Setting Simulation Parameters section for more information about 
setting these parameters.

The Simulation Loop has error in and error out terminals, which send 
error information through the simulation diagram. If the error in terminal 
detects an error, the simulation diagram returns the error information in the 
error out terminal and does not evaluate the simulation. If an error occurs 
while the Simulation Loop is executing, the simulation stops running, and 
the error information is output in the error out terminal. Refer to the 
Simulation Debugging section for more information about how to resolve 
simulation errors.

LabVIEW VIs, Functions, and Structures
You can use a majority of LabVIEW VIs and functions to describe a model. 
However, you cannot place certain structures, such as the Case structure, 
While Loop, For Loop, Event structure, or the Sequence structures, directly 
on the simulation diagram. Instead, you can place these structures in a 
subVI and then place the subVI on a simulation diagram.

Note You can load models you create using the LabVIEW Control Design VIs into the 
simulation diagram. Refer to the LabVIEW Control Design Toolkit User Manual for more 
information about control design models.



Chapter 2 Simulation Environment

© National Instruments Corporation 2-3 LabVIEW Simulation Module User Manual

When you place a VI on a simulation diagram, you can specify whether to 
run that VI as a discrete node. By running the VI as a discrete node, you 
ensure that VI executes only once per fixed time period. This fixed time 
period equals the discrete time step of the simulation multiplied by the 
Sample Rate Divisor for the node. When you run a VI as a discrete node, 
a red ‘D’ appears on the VI icon, shown at left. Right-click the VI on the 
simulation diagram and select SubVI Node Setup from the shortcut menu 
to display the SubVI Node Setup dialog box. You can use this dialog box 
to specify whether to run the VI as a discrete node. If you place a 
checkmark in the Run as Discrete Node checkbox, you must specify the 
Sample Rate Divisor for the node. Configure this divisor as you would in 
a discrete system. Refer to the Simulation Subsystems section for more 
information about the Sample Rate Divisor.

Note The Run as Discrete Node option is enabled by default with a Sample Rate Divisor 
of 1.

Feedback Cycles
The relationship between the inputs and outputs of a function defines the 
feedthrough behavior of that function. An input has direct feedthrough to 
an output if the function uses the input at the current step to compute the 
output at the current step. An input has indirect feedthrough to an output if 
the function does not use the input at the current step to compute the output 
at the current step. The indirect feedthrough function uses the input from 
the previous step or steps to compute the output at the current step.

A function on a LabVIEW simulation diagram might require only a subset 
of its inputs at the current step to compute any given output at the current 
step. A function on the simulation diagram returns a given output as soon 
as it has received the inputs that have direct feedthrough to the output, 
regardless of whether the function has received the inputs that have indirect 
feedthrough to the output. Therefore, on a simulation diagram, you can 
create a cycle in which data flow originates from an output of a function or 
subsystem that has indirect feedthrough behavior and terminates as an input 
of the same function or subsystem. This flow of data is known as a feedback 
cycle. In a feedback cycle, the output of the indirect feedthrough function 
or subsystem at time t is a function of the input to the same function or 
subsystem at time t – dt, t – dt2, and so on. 

You can use one or more Simulation functions as well as other LabVIEW 
functions in a feedback cycle as long as at least one Simulation function 
in the feedback cycle has indirect feedthrough behavior. The indirect 
feedthrough function can start the data flow by executing its output at the 



Chapter 2 Simulation Environment

LabVIEW Simulation Module User Manual 2-4 ni.com

current step before receiving an input from the cycle at the current step. 
Therefore, the input at the current step and the output at the current step 
must not depend on each other directly in at least one function in the cycle.

Figure 2-2.  Feedback Cycles

Various Simulation functions, such as the Integrator function, have indirect 
feedthrough behavior and, therefore, allow feedback cycles. LabVIEW 
automatically determines the type of feedthrough behavior that exists 
between inputs and outputs. If you attempt to wire an output to an input that 
has direct feedthrough to that output, the wire is broken. In the top 
Integrator function shown in Figure 2-2, output is wired to input. Because 
input, in this case, does not have direct feedthrough to output, LabVIEW 
allows the feedback cycle. In the bottom Integrator function, output is 
wired to the initial condition input. Because initial condition has direct 
feedthrough to output, LabVIEW does not allow this feedback cycle and 
the wire appears broken.

Note The wires on the simulation diagram use arrows to indicate the direction of data 
flow. These arrows help you identify feedback cycles on the simulation diagram by 
showing data flow direction.



Chapter 2 Simulation Environment

© National Instruments Corporation 2-5 LabVIEW Simulation Module User Manual

Feedthrough behavior differs from function to function. The following 
Simulation functions have indirect feedthrough behavior: 

• Integrator

• Transport Delay

• Discrete Unit Delay

For other Simulation functions, the parameter values you specify determine 
the feedthrough behavior. The following Simulation functions have 
parameter-dependent feedthrough behavior: 

• State Space

• Transfer Function

• Zero-Pole-Gain

• Discrete Filter

• Discrete Integrator

• Discrete State Space

• Discrete Transfer Function

• Discrete Zero-Pole-Gain

Refer to the LabVIEW Help for information about which parameters 
determine the feedthrough behavior of these functions. All other 
Simulation functions have direct feedthrough behavior. Refer to the 
LabVIEW Help for information about the direct or indirect feedthrough 
behavior of individual Simulation functions.

Setting Simulation Parameters
The simulation parameters determine the way the simulation diagram 
executes. Any subsystem you place on a simulation diagram inherits the 
simulation parameters from the parent simulation diagram. Refer to the 
Simulation Subsystems section for more information about how simulation 
parameters operate in subsystems.

To set the simulation parameters for the simulation diagram at edit time, 
you can use the Simulation Parameters dialog box. To set the simulation 
parameters programmatically, use the Set Diagram Parameters function.

The Simulation Parameters dialog box, shown in Figure 2-3, contains 
options for setting the duration of the simulation and the parameters of the 
ODE solver. To access the Simulation Parameters dialog box, right-click 
the border of the Simulation Loop and select Configure Simulation 
Parameters from the shortcut menu. When you run a stand-alone 



Chapter 2 Simulation Environment

LabVIEW Simulation Module User Manual 2-6 ni.com

simulation subsystem, you can access the Simulation Parameters dialog 
box by selecting Operate»Configure Simulation Parameters from the 
pull-down menu.

Figure 2-3.  Simulation Parameters Dialog Box

Use the Set Diagram Parameters function to set the values of the simulation 
parameters programmatically. 

Note Do not select Create»Control or Create»Constant directly from the parameters 
terminal to set the simulation parameters. If you create a control or constant directly from 
the parameters terminal, the control or constant does not explicitly list all of the simulation 
parameters you can set.

Place the Set Diagram Parameters function outside the Simulation Loop to 
the left of the parameters terminal and wire the simulation parameters out 
output of this function to the parameters terminal. Then, right-click the 
Set Diagram Parameters function and select Create»Control or Create»
Constant from the shortcut menu to create a set of simulation parameters 
controls on the front panel. Figure 2-4 shows how to wire the Set Diagram 



Chapter 2 Simulation Environment

© National Instruments Corporation 2-7 LabVIEW Simulation Module User Manual

Parameters function to create a control you can use to configure the 
simulation parameters.

Figure 2-4.  Wiring the Set Diagram Parameters Function

Note If you wire the Set Diagram Parameters function to the parameters terminal, the 
configuration data the function specifies—including the default values—override the static 
configuration you set using the Simulation Parameters dialog box.

Simulation Time Parameters
When LabVIEW executes a simulation, an ODE solver evaluates the 
simulation diagram over multiple time steps beginning at the time you 
specify in the Initial Time parameter and ending at the time you specify 
in the Final Time parameter. 

Continuous Solver Parameters
Use the Continuous Solver Method parameter to specify the type of ODE 
solver LabVIEW uses to evaluate the simulation diagram. The type of ODE 
solver you select determines what other simulation parameters you can set. 
If you specify a fixed step-size ODE solver method, you can set the Time 
Step, in units of seconds. The Time Step is the interval between the times 
at which the ODE solver evaluates the model and updates the model output.

If you select a variable step-size ODE solver method, you can specify the 
Initial Time Step, which is the time step size for the first time step of 
the simulation diagram evaluation. A variable step-size ODE solver 
dynamically adjusts subsequent time steps based upon what you specify in 
the Relative Tolerance and Absolute Tolerance parameters. You can use 
the Minimum Time Step and Maximum Time Step parameters to specify 
the smallest and largest time step sizes the variable step-size ODE solver 
can use to evaluate the simulation diagram.

Note Methods whose names are followed by the word (variable) in the Continuous 
Solver Method list are variable step-size ODE solver methods. All other methods in the 
list are fixed step-size ODE solver methods.



Chapter 2 Simulation Environment

LabVIEW Simulation Module User Manual 2-8 ni.com

The time step size affects how accurate a simulation is and how fast the 
simulation runs. A simulation with a large time step runs faster than a 
simulation with a smaller time step. However, a simulation with a large 
time step is less accurate than a simulation with a smaller time step. Refer 
to Chapter 4, Ordinary Differential Equation Solvers, for more information 
about ODE solvers and time steps.

Discrete Solver Parameters
The Discrete Time Step is the base time interval, in units of seconds, for 
which the ODE solver evaluates the discrete functions and updates the 
function outputs. However, the ODE solver might not evaluate a discrete 
function each Discrete Time Step. Rather, the ODE solver evaluates the 
discrete function every n discrete time steps, where n is the sample rate 
divisor you specify for that function. Refer to the Discrete Systems 
Functions section for more information about how LabVIEW determines 
when to update the output of a discrete function.

The type of ODE solver you select determines how you can specify the 
Discrete Time Step. If you select a fixed step-size ODE solver method, 
you can use the Use multiple of Time Step option, which is enabled by 
default, to set the Discrete Time Step. When this option is enabled, 
LabVIEW multiplies the Time Step by the Discrete Time Step Multiple 
to calculate the Discrete Time Step. The Use multiple of Time Step 
option is useful because, for fixed step-size ODE solvers, the Discrete 
Time Step must be an integer multiple of the Time Step.

If you remove the checkmark from the Use multiple of Time Step 
checkbox and specify the Discrete Time Step directly, LabVIEW verifies 
that the Discrete Time Step is an integer multiple of the Time Step for 
fixed step-size ODE solvers. If you attempt to specify a Discrete Time 
Step that is not an integer multiple of the Time Step, LabVIEW launches 
a Configuration Error dialog box when you click OK to close the 
Simulation Parameters dialog box. You can select Modify 
Configuration or Continue Anyway from the Configuration Error 
dialog box.

If you select a variable step-size ODE solver, the Discrete Time Step is not 
required to be an integer multiple of the Time Step. Therefore, the Use 
multiple of Time Step option is not available. You must specify the 
Discrete Time Step directly. The Use multiple of Time Step option is also 
unavailable if you configure the simulation parameters programmatically, 
regardless of the ODE solver method you select.



Chapter 2 Simulation Environment

© National Instruments Corporation 2-9 LabVIEW Simulation Module User Manual

Setting Timing Parameters
Right-click the Simulation Loop and select Configure Simulation Timing 
Parameters from the shortcut menu to display the Loop Configuration 
dialog box. Use this dialog box to configure the simulation timing 
parameters.

Note The simulation timing parameters are most accurate in a LabVIEW Real-Time 
application. If you do not run an application on a real-time system, other processes on the 
operating system can interrupt the execution of the Simulation Loop.

LabVIEW Real-Time Module for ETS Targets
If you are executing a simulation on a real-time operating system, National 
Instruments recommends you set the Period, in milliseconds/microseconds 
(the unit depends on the timing source), to the same value as the Time Step 
of the simulation model. The Simulation Loop uses the Period to achieve 
wall-clock time.

LabVIEW Real-Time Module for RTX Targets
You must set the Period to 0 to avoid receiving a run-time error when you 
select the RTX target as the execution target for a simulation diagram or 
subsystem. If you select the RTX target as the execution target for a 
top-level simulation diagram or subsystem with a non-zero Period, 
LabVIEW returns a run-time error if you attempt to run the simulation 
diagram or subsystem. If the simulation diagram or subsystem is embedded 
in a subVI, LabVIEW returns a run-time error if you attempt to run the 
subVI. 

Complete the following steps to avoid these errors when you run a 
simulation diagram or subsystem that is downloaded to the RTX target:

1. Open the Loop Configuration dialog box and set the Period to 0.

2. Place a subVI that contains a Wait Until Next ms Multiple function on 
the simulation diagram or subsystem and set the millisecond multiple 
accordingly.

This procedure allows other tasks to continue to execute when the 
simulation is not scheduled to execute. Refer to the LabVIEW Real-Time 
Module User Manual for more information about using the LabVIEW 
Real-Time Module for RTX Targets.



Chapter 2 Simulation Environment

LabVIEW Simulation Module User Manual 2-10 ni.com

Off-Line Simulations
If you are executing an off-line simulation on a Windows operating system, 
National Instruments recommends you set the Period to 0 for optimal 
performance. Refer to the Loop Configuration Dialog Box (Simulation 
Module) topic in the LabVIEW Help for more information about setting the 
timing parameters for the Simulation Loop.

Simulation Functions
Use the Simulation functions and other LabVIEW functions to build a 
simulation model. You must place all Simulation functions, except the 
Set Diagram Parameters function, on the simulation diagram, either inside 
a Simulation Loop or in a simulation subsystem. Refer to Simulation 
Subsystems for information about placing functions in a simulation 
subsystem.

Many Simulation functions have a configuration dialog box that you can 
use to view and set the function parameters. Double-click a Simulation 
function to display its configuration dialog box. For example, Figure 2-5 
displays the configuration dialog box for the Sine Wave function.



Chapter 2 Simulation Environment

© National Instruments Corporation 2-11 LabVIEW Simulation Module User Manual

Figure 2-5.  Configuration Dialog Box

The left side of the configuration dialog box lists all the parameters that you 
can configure for the Sine Wave function. When you select a parameter 
from the Parameters table, the Parameter Information section displays 
a control you can use to set the value of that parameter. You can use the 
Parameter source control to specify the source of the parameter value. 
If you select Configuration page as the Parameter source, LabVIEW 
uses the parameter value you specify in the configuration dialog box. If you 
select Terminal, LabVIEW uses the parameter value you wire to the input 
terminal on the simulation diagram.

Note If you specify Configuration page as the Parameter source for a parameter, an 
input terminal does not exist on the function icon for that parameter.

The parameters you specify for a Simulation function are unique to that 
function. If you create multiple instances of the same function, you can set 
different parameter values for each instance of the Simulation function. If 
you copy and paste a Simulation function, the copy of the function retains 
the parameter values of the original function.



Chapter 2 Simulation Environment

LabVIEW Simulation Module User Manual 2-12 ni.com

Discrete Systems Functions
The sample rate of a discrete function must be a multiple of the discrete 
time step of the system. All discrete functions have a sample rate divisor 
parameter on the configuration dialog box. This parameter specifies the 
multiple of the discrete time step that LabVIEW uses to determine the 
sample rate of the discrete function. If the sample rate divisor is 1, the 
discrete function updates its output every discrete time step. If the sample 
rate divisor is n, the discrete function updates its output every n discrete 
time steps.

Note Different discrete functions can run at different sample rates in the Simulation Loop.

Displaying Dynamic Content on Expandable Nodes
Simulation function icons, called expandable nodes, can display dynamic 
content on the simulation diagram. The configuration of the function you 
specify in the configuration dialog box determines the expandable node 
display. For example, the Signal Generator function graphically displays 
a preview of the signal it will generate. If you change the signal type 
parameter of this function, the signal the icon displays changes. Figure 2-6 
shows the expandable node for the Signal Generator function. The Signal 
Generator function on the left shows the icon for the function when you set 
the signal type to Sine. The Signal Generator function on the right shows 
the icon for the same function when you set signal type to Sawtooth.

Figure 2-6.  Displaying Dynamic Content on an Expandable Node

Note A function displays dynamic content only if it uses the dynamic icon style. 
Right-click an icon and select Icon Style»Dynamic from the shortcut menu to specify this 
icon style. Dynamic is the default icon style for Simulation functions.



Chapter 2 Simulation Environment

© National Instruments Corporation 2-13 LabVIEW Simulation Module User Manual

If an expandable node uses the dynamic icon style, you can change the size 
of that expandable node on the simulation diagram. For example, you can 
resize the Signal Generator node on the simulation diagram to view more 
of the graph. Figure 2-7 displays the original icon and the resized icon.

Figure 2-7.  Resizing Expandable Nodes

Flipping Function Direction
Because feedback cycles are an inherent part of a simulation model, 
feedback loops are common. You can flip Simulation functions 
horizontally to better display the data flow of a looped system, 
as shown in Figure 2-8.

Figure 2-8.  Horizontally Flipping the Gain Function

To flip a Simulation function, right-click the icon and select Reverse 
Terminals from the shortcut menu.



Chapter 2 Simulation Environment

LabVIEW Simulation Module User Manual 2-14 ni.com

Programmatically Stopping a Simulation
To stop the simulation programmatically, use the Halt Simulation function. 
Place the Halt Simulation function on the simulation diagram and wire a 
Boolean control to the Halt? input. If the Halt? Boolean control is TRUE, 
the function stops the simulation after the current time step. You also can 
place a Halt Simulation function in a simulation subsystem to stop the 
execution of the parent simulation diagram. The Halt Simulation function 
operates like the conditional terminal on a While Loop. However, you can 
place more than one Halt Simulation function on the simulation diagram. 
With multiple Halt Simulation functions, you can stop the simulation from 
various points in a simulation diagram or subsystem.

Simulation Subsystems
Creating simulation models using the Simulation Module can require a 
large amount of space on the block diagram. To reduce the amount of space 
required to create a simulation diagram, you can convert a section of that 
simulation diagram into a simulation subsystem.

A simulation subsystem, like a subVI, is a type of LabVIEW VI. A function 
in a simulation subsystem can execute when that function receives all the 
inputs that function uses, even if the subsystem has not received all the 
inputs the subsystem uses. A simulation subsystem stores a feedthrough 
mapping from all inputs to all outputs. If an indirect feedthrough function 
is in the data flow from a subsystem input to a subsystem output, that is, if 
a dependency does not exist between a subsystem input at the current step 
and a subsystem output at the current step, LabVIEW allows you to use the 
subsystem as an indirect feedthrough function in a feedback cycle. Refer to 
the Feedback Cycles section for more information.

Creating a Simulation Subsystem
You can create a simulation subsystem by selecting a section of a 
simulation diagram and selecting Edit»Create Simulation Subsystem 
from the pull-down menu. LabVIEW replaces the nodes in the selected 
section in the simulation diagram with a single node that represents the 
simulation subsystem. 

Note If you select Edit»Create SubVI after highlighting nodes on a simulation diagram, 
LabVIEW creates a subVI from only the non-Simulation function nodes in the selection.



Chapter 2 Simulation Environment

© National Instruments Corporation 2-15 LabVIEW Simulation Module User Manual

You also can create a simulation subsystem using the New dialog box, 
which you can access by selecting File»New from the pull-down menu. 
Select Other Document Types»Simulation Subsystem from the Create 
new list.

Stand-Alone Subsystems
When you execute the simulation subsystem as a stand-alone VI, the 
simulation diagram executes as if it were contained within a Simulation 
Loop. This behavior enables you to edit the simulation model without 
having to place a Simulation Loop on the block diagram.

Simulation subsystems store default simulation parameters that LabVIEW 
uses when executing the subsystem as a stand-alone VI. You can use the 
Simulation Parameters dialog box to configure the simulation parameters 
for the subsystem. Select Operate»Configure Simulation Parameters 
from the pull-down menu to access this dialog box from a subsystem. The 
parameter settings for the subsystem are valid only when the subsystem 
runs as a stand-alone VI. When you place the subsystem on a simulation 
diagram, the subsystem inherits the parameter values from the parent 
simulation diagram. Refer to the Setting Simulation Parameters section for 
more information about simulation parameters.

You can configure the simulation timing parameters for a stand-alone 
subsystem by selecting Operate»Configure Simulation Timing 
Parameters from the pull-down menu. When you place the subsystem on 
a simulation diagram, the subsystem inherits the timing parameters of the 
parent simulation diagram. Refer to the Setting Timing Parameters section 
for more information about simulation timing.

Subsystems within a Simulation Diagram
If you do not run the simulation subsystem as a stand-alone VI, you can 
place the simulation subsystem on a simulation diagram. LabVIEW 
executes a simulation subsystem like other Simulation functions on the 
simulation diagram.

Note The settings you specify in the Execution Properties page for the simulation 
subsystem do not affect the execution of the parent simulation diagram when you place the 
subsystem on a simulation diagram. Select File»VI Properties and select Execution from 
the pull-down menu to display the Execution Properties page.



Chapter 2 Simulation Environment

LabVIEW Simulation Module User Manual 2-16 ni.com

When you place a simulation subsystem on a simulation diagram, 
LabVIEW creates a special simulation subsystem node. To open the front 
panel of the simulation subsystem, right-click the simulation subsystem 
node and select Open Subsystem from the shortcut menu. The simulation 
subsystem node, like Simulation function nodes, is resizable and 
dynamically displays the simulation diagram of the subsystem.

Like a Simulation function, the simulation subsystem has a configuration 
dialog box, which you can use to specify sources and values for each of the 
input parameters wired to the simulation subsystem. Double-click the 
simulation subsystem node to access this dialog box. The control 
connection type for each parameter on the subsystem connector pane 
determines the default source of the parameter in the configuration dialog 
box. The initial value for the parameter is the default value of the control 
on the subsystem simulation diagram that corresponds to that parameter. 
The following list describes the default sources of parameters as they 
correspond to the control connection types.

• If the connection is required, the parameter is available only as a 
terminal on the node. The parameter is not visible in the configuration 
dialog box.

• If the connection is recommended, the initial source of the parameter 
is the terminal. You also have the option to configure the parameter 
using the configuration dialog box.

• If the connection is optional, the initial source of the parameter is the 
configuration dialog box. You also have the option to configure the 
parameter using a terminal on the node.

Note You can configure the connector pane for a simulation subsystem the same way you 
configure the connector pane for a subVI.

Linearizing a Subsystem
You can use the Linearize Subsystem dialog box to generate a linear 
time-invariant state-space model from the subsystem model. You can use 
this linear state-space model for control design. Select Tools»Simulation 
Tools»Linearize Subsystem from the pull-down menu to display this 
dialog box. Refer to the LabVIEW Help for more information about the 
Linearize Subsystem dialog box.



Chapter 2 Simulation Environment

© National Instruments Corporation 2-17 LabVIEW Simulation Module User Manual

Simulation Debugging
LabVIEW performs syntax checking on the simulation diagram. While you 
edit the simulation diagram, LabVIEW notifies you if there is a data type 
problem or an invalid feedback cycle.

The simulation diagram supports standard LabVIEW debugging 
techniques. You can use execution highlighting, breakpoints, probes, 
custom probes, and single-stepping on the simulation diagram. 

You cannot use execution highlighting, breakpoints, probes, or 
single-stepping in a simulation subsystem if that subsystem is part of a 
simulation diagram. You also cannot step into a subsystem. You can set a 
breakpoint on the entire subsystem by right-clicking the subsystem and 
selecting Set Breakpoint from the shortcut menu. You also can use a probe 
or a custom probe to monitor the subsystem output.

Note If you run the subsystem in stand-alone mode, you can debug it the same way you 
can debug a simulation diagram.

Refer to the LabVIEW User Manual for information about LabVIEW 
debugging techniques.



© National Instruments Corporation 3-1 LabVIEW Simulation Module User Manual

3
Real-Time Applications

The Simulation Module, in conjunction with the LabVIEW Real-Time 
Module and National Instruments hardware, allows you to implement 
simulations and controllers in real time with real-world inputs and outputs. 
This chapter provides an overview of a real-time application and describes 
a case study that involves the rapid control prototype (RCP) and 
hardware-in-the-loop (HIL) implementations.

Refer to the LabVIEW Real-Time Module User Manual for more 
information about creating real-time applications using the LabVIEW 
Real-Time (RT) Module. You can use the RT Module to get data into 
and out of the real-time VI. You also can use tools such as the RT 
Communication Wizard and the LabVIEW Execution Trace Tool to 
develop and fine-tune an application. Refer to the LabVIEW Execution 
Trace Toolkit User Guide for more information about the LabVIEW 
Execution Trace Tool.

Refer to the documentation for the type of I/O you are using for more 
information about I/O programming in the Real-Time Module. For 
example, refer to the NI-DAQmx Help for information about analog, 
digital, and timing I/O. Refer to the NI-CAN Hardware and Software 
Manual for information about CAN I/O.

Determinism
Running a simulation or controller in real time means that the simulation 
time must equal the wall-clock time at each point at which the simulation 
or controller interacts with the real world. Generally, these physical 
interaction points correspond to the sampling points of the input and output 
hardware. Thus, at each sampling time, the simulation time must equal the 
wall-clock time.

To meet the real-time deadline, the software implementing the simulation 
or controller must execute deterministically. That is, there is a strict upper 
bound on the execution time of the software. Running a model in real time 
requires that you use deterministic algorithms in the time-critical portion of 
the application. Running the model in real time ensures that code running 
at each time step meets the deadlines imposed by the timing of the hardware 



Chapter 3 Real-Time Applications

LabVIEW Simulation Module User Manual 3-2 ni.com

inputs and outputs. Some ODE solvers, including the variable step-size 
ODE solvers, are inherently non-deterministic. You cannot use these 
non-deterministic ODE solvers in a real-time application.

To meet determinism requirements, you must use an ODE solver designed 
for determinism, which includes the Runge-Kutta 1–4 ODE solvers. These 
ODE solvers are all fixed time-step algorithms, which are appropriate for 
fixed sampling-rate inputs and outputs.

All of the discrete ODE solvers have an inherently fixed time step size and 
are inherently deterministic. Therefore, the discrete ODE solvers are 
appropriate for real-time implementation. The Discrete Systems functions 
use the discrete ODE solvers in their implementation. ODE solver 
determinism is important only when you use continuous dynamic 
functions, such as the Integrator, State Space, Transfer Function, and 
Zero-Pole-Gain functions.

Case Study: Rapid Control Prototype and 
Hardware-in-the-Loop Simulation

This section provides an overview of the process you might use to create a 
controller. It describes an off-line simulation that contains both the plant 
and the controller. It also describes how to modify this off-line simulation 
to create an RCP, followed by an HIL, simulation.

Off-Line Simulation
The starting point is the off-line simulation of the full system. The 
simulation diagram in Figure 3-1 represents a simple control system. 
The system contains a controller, a model of the plant, and a front panel 
control that represents the set point or reference signal.



Chapter 3 Real-Time Applications

© National Instruments Corporation 3-3 LabVIEW Simulation Module User Manual

Figure 3-1.  Full System Simulation

Rapid Control Prototype Implementation
You might want to prototype the controller implementations on real-time 
hardware with the controller outputs connected to real actuators and the 
controller inputs connected to real sensors. This prototyping method is 
often referred to as rapid control prototyping.

To convert the full simulation to a rapid control prototype, remove the plant 
model from the simulation. Replace the plant input with a hardware output 
and replace the plant output with a hardware input. 

Note The inputs and outputs can be analog or digital signals, timing signals such as 
encoders, CAN signals, and so on.

Figure 3-2 shows the block diagram of the RCP implementation.

Figure 3-2.  Rapid Control Prototype Implementation



Chapter 3 Real-Time Applications

LabVIEW Simulation Module User Manual 3-4 ni.com

In Figure 3-2, notice that the block diagram code to the left of the 
Simulation Loop is the NI-DAQmx setup code. Inside the Simulation 
Loop, the DAQmx Read (Analog DBL 1Chan 1Samp) VI receives an 
analog value from the data acquisition device, and the DAQmx Write 
(Analog DBL 1Chan 1Samp) VI returns an analog value to the device. 
Refer to the NI-DAQmx Help for more information about single-point 
hardware-timed I/O.

Hardware-in-the-Loop Implementation
You might want to test a controller implementation versus a plant 
simulation. In these HIL simulations, the plant model and its associated 
inputs and outputs must occur in real time to provide the most accurate and 
reliable controller testing.

You can convert the full simulation of the system to an HIL simulation in a 
manner similar to the RCP implementation. You must remove the controller 
from the full off-line simulation and then replace the plant model input with 
a hardware input and the plant model output with a hardware output. The 
result, shown in Figure 3-3, is a system similar to the RCP implementation, 
except with the controller model, not the plant model, replaced with 
physical hardware inputs and outputs.

Figure 3-3.  Hardware-in-the-Loop Implementation

Discrete Behavior
Notice the discrete nature of the I/O calls in the simulation diagram. The 
I/O executes only once per fixed time step of the continuous Integrator 
function. Refer to the LabVIEW VIs, Functions, and Structures section 
of Chapter 2, Simulation Environment, for more information about 
configuring the discrete behavior of LabVIEW VIs you place on a 
simulation diagram.



© National Instruments Corporation 4-1 LabVIEW Simulation Module User Manual

4
Ordinary Differential Equation 
Solvers

To compute the behavior of a continuous model over time, the Simulation 
Module must solve the following initial value problem:

y represents the outputs of the Integrator functions, y0 represents the initial 
conditions for those Integrator functions, and f(t, y) represents the other 
(non-integrating) functions on the simulation diagram.

The Simulation Module provides a number of solution methods for this 
problem. Each of the ODE solvers approximates the behavior of the model 
at time t + dt based on the behavior of the model from t0 to t. The quantity 
dt is the step size of the ODE solver, and the interval from t to t + dt is one 
time step taken by the ODE solver. All ODE solvers might need to evaluate 
the model diagram multiple times to compute accurate values for time 
t + dt. This means that when you are debugging a simulation, you might 
notice data flowing through the simulation diagram several times before 
LabVIEW updates the indicators and graphs with their values for the end 
of the time step.

It is useful to understand the various strengths and weaknesses of the ODE 
solvers when simulating different types of models so you can determine the 
appropriate ODE solver to use for an application. Refer to the following 
books for more information about ODE solvers: Computer Methods for 
Ordinary Differential Equations and Differential-Algebraic Equations1 
and Numerical Solution of Ordinary Differential Equations2.

1   Ascher, Uri M., and Linda R. Petzold. Computer Methods for Ordinary Differential Equations and Differential-Algebraic 
Equations. Philadelphia: Society for Industrial and Applied Mathematics, 1998.

2   Shampine, Lawrence F. Numerical Solution of Ordinary Differential Equations. New York: Chapman & Hall, Inc., 1994.

dy
dt
------ f t y,( )=

y t0( ) y0=



Chapter 4 Ordinary Differential Equation Solvers

LabVIEW Simulation Module User Manual 4-2 ni.com

Simulation Discontinuities
In general, the Simulation Module ODE solvers assume that all simulation 
diagram signals and their derivatives are continuous throughout any time 
step. To get the most accurate solution possible, the ODE solver must stop 
and restart whenever it encounters a discontinuity. Therefore, the presence 
of many discontinuities in a simulation limits the maximum step size that 
an ODE solver can take. This influences which ODE solver you should 
choose.

LabVIEW already accounts for discontinuities introduced by the Nonlinear 
Systems and Discrete Systems functions the Simulation Module provides. 
However, if a model contains continuous-mode subVIs whose outputs, or 
derivatives of outputs, are not continuous, then the model must reset the 
ODE solver at the points of discontinuity. You can add a Zero Cross Detect 
function or wire the reset terminal on an Integrator function to ensure the 
model resets the ODE solver correctly. 

ODE Solver Accuracy and Order
To measure the accuracy of a simulation, you can measure the error 
introduced into the solution per time step, which is known as the local error, 
and measure the maximum difference between the computed solution and 
the exact solution, which is known as the global error. The amount the error 
changes when you vary the step size depends on the order of the ODE 
solver you use. If you reduce the step size of an ODE solver by a factor of 
λ, then the local error is reduced by approximately λn + 1, where n is the 
order of the ODE solver. Depending on the simulation, the global error 
might be reduced by approximately λn. For example, if you run a model 
once with a step size of 0.1 and then run the model again with a step size of 
0.05, the solution a first-order ODE solver gives might be approximately 
twice as accurate in the second run as in the first run. The solution a 
fourth-order ODE solver gives might be approximately 16 times more 
accurate in the second run than in the first run.

In general, with a higher order ODE solver, you can use fewer time steps 
and larger step sizes to get the accuracy you need, thus decreasing the 
effects of round-off in the solution and potentially reducing the amount of 
time needed to compute the solution. However, this accuracy might come 
with a higher computational cost per step. If the step size is limited by 
factors other than error, such as discontinuities, you might get the accuracy 
you need more efficiently by using a lower order ODE solver.



Chapter 4 Ordinary Differential Equation Solvers

© National Instruments Corporation 4-3 LabVIEW Simulation Module User Manual

Variable Step-Size versus Fixed Step-Size ODE Solvers
Some of the ODE solvers the Simulation Module provides estimate the 
error introduced by the ODE solver at each time step. These ODE solvers 
then adjust the step size throughout the simulation to ensure that this 
per-step error remains at a given relative and absolute tolerance. More 
specifically, for each integrator variable y, the ODE solver varies the step 
size to control the error according to the following approximation:

These variable step-size ODE solvers can take small time steps when the 
simulation variables vary rapidly and can take larger time steps when the 
simulation variables vary more slowly, which increases computational 
efficiency.

However, variable step-size ODE solvers are not appropriate for 
deterministic real-time applications because the computational overhead of 
taking a time step varies over the course of a simulation. Therefore, the 
Simulation Module also provides fixed step-size, deterministic ODE 
solvers. These ODE solvers do not estimate the local per-step error and 
maintain a fixed step size throughout a simulation.

Single-Step versus Multi-Step ODE Solvers
The Simulation Module single-step ODE solvers approximate the behavior 
of the model at time t + dt by taking into account only the behavior of the 
model at time t. In contrast, multi-step ODE solvers approximate the 
behavior at the end of the time step by taking into account the model 
behavior at a number of previous time steps. 

To achieve high order accuracy, single-step ODE solvers might need to 
evaluate the model diagram more often per time step than multi-step 
ODE solvers. Therefore, single-step ODE solvers might incur a higher 
computational cost per step. Because of this, multi-step ODE solvers might 
be able to compute an accurate solution more efficiently, in some cases, 
than single-step ODE solvers. However, a certain amount of work is 
required to start up a multi-step ODE solver, which must be incurred each 
time an Integrator function is reset or a discontinuity is encountered. 
In simulations in which the ODE solver is reset often, it might be more 
efficient to use a single-step ODE solver.

per-step error y  * relative tolerance absolute tolerance+≈



Chapter 4 Ordinary Differential Equation Solvers

LabVIEW Simulation Module User Manual 4-4 ni.com

Stiff ODE Solvers
Certain problems, especially those with transients that vary much more 
quickly than the problem solution, can be difficult to solve numerically 
without using special ODE solver techniques. These problems are stiff 
problems. When you solve stiff problems without a stiff ODE solver, you 
might notice that variable step-size ODE solvers take smaller and smaller 
time steps until they can no longer make progress on the simulation. You 
also might notice an inaccurate and rapidly growing oscillatory solution no 
matter how small a step size you use. In this situation, you can use a stiff 
ODE solver to get a more accurate solution.

LabVIEW Simulation ODE Solvers
Use the Simulation Parameters dialog box or Set Diagram Parameters 
function to specify the ODE solver to use to evaluate the simulation 
diagram. The Simulation Module provides the following ODE solvers:

• Runge-Kutta 1 (Euler)—This is a fixed step-size, single-step explicit 
Runge-Kutta ODE solver of first order.

• Runge-Kutta 2—This is a fixed step-size, single-step explicit 
Runge-Kutta ODE solver of second order.

• Runge-Kutta 3—This is a fixed step-size, single-step explicit 
Runge-Kutta ODE solver of third order.

• Runge-Kutta 4—This is a fixed step-size, single-step explicit 
Runge-Kutta ODE solver of fourth order.

• Runge-Kutta 23—This is a variable step-size, single-step explicit 
Runge-Kutta ODE solver of third order.

• Runge-Kutta 45—This is a variable step-size, single-step explicit 
Runge-Kutta ODE solver of fifth order, which uses the 
Dormand-Prince coefficients.

• BDF—This is a variable step-size, variable order (orders 1 through 5) 
implementation of the multi-step Gear’s Method. This method is 
adequate for moderately stiff problems.

• Adams-Moulton—This is a variable step-size, variable order 
(orders 1 through 12) implementation of the Adams-Moulton 
predictor-corrector pair in predict-evaluate-correct-evaluate (PECE) 
mode.



Chapter 4 Ordinary Differential Equation Solvers

© National Instruments Corporation 4-5 LabVIEW Simulation Module User Manual

Refer to the Setting Simulation Parameters section in Chapter 2, 
Simulation Environment, for more information about specifying an ODE 
solver.



© National Instruments Corporation 5-1 LabVIEW Simulation Module User Manual

5
Simulink Translator

You can use the Simulink Translator to convert a Simulink model (.mdl) 
file into a LabVIEW VI that contains a simulation diagram. The .mdl file 
contains a hierarchical definition of the system and the blocks, lines, and 
subsystems within the system. 

Note The Simulink Translator cannot convert Stateflow® diagrams or other Simulink 
blocksets.

The Simulink Translator converts the .mdl file into a top-level VI that 
consists of a simulation diagram containing LabVIEW functions, wires, 
and subsystems corresponding to the contents of the .mdl file.

Converting Simulink Models into LabVIEW Code
Select Tools»Simulation Tools»Simulink Translator from the pull-down 
menu to display the Simulink Translator dialog box. Refer to the 
LabVIEW Help for information about specific Simulink Translator dialog 
box options.

The Simulink Translator reads and parses the .mdl file for model 
information such as timing and ODE solver settings.

Note If MathWorks MATLAB® and Simulink are installed on the computer, the Simulink 
Translator automatically executes any .m files included in the .mdl file before it parses the 
.mdl file. 

The Simulink Translator parses and stores each system, subsystem, 
block, and line in Common Graph Description (CGD) format, which is 
XML-based. The Simulink Translator uses the CGD file to generate a 
LabVIEW subsystem for each Simulink subsystem in order. Converting in 
order ensures that the Simulink Translator generates every subsystem that 
has a parent simulation diagram before it generates the parent simulation 
diagram. The Simulink Translator converts all blocks into one or more 
LabVIEW functions or subsystems. The Simulink Translator also converts 
lines into wires that connect terminals on the LabVIEW functions and 
subsystems.



Chapter 5 Simulink Translator

LabVIEW Simulation Module User Manual 5-2 ni.com

Common Warnings
If the Simulink Translator cannot find a value for a parameter in the .mdl 
file it is converting, you receive a warning. In these cases, the Simulink 
Translator uses the default value of the parameter in the corresponding 
LabVIEW function.

Note In some cases, the Simulink Translator cannot find a value for a parameter because 
the parameter contains an expression instead of a constant value. If MATLAB is installed 
on the computer, the Simulink Translator attempts to evaluate these MATLAB expressions 
in the .mdl file prior to translating the file. If the Simulink Translator successfully 
evaluates the expression, the Simulink Translator uses the result of that evaluation as 
the parameter value and does not produce a warning.

The Simulink Translator cannot fully convert all elements of every 
Simulink model to LabVIEW block diagram code. If the Simulink 
Translator encounters a block it cannot convert, you receive a warning. In 
these cases, the Simulink Translator creates a placeholder subsystem. You 
must create a subsystem with the same functionality as the block to replace 
this placeholder subsystem. Refer to the LabVIEW Help for a list of the 
Simulink blocks the Simulink Translator cannot convert.



© National Instruments Corporation A-1 LabVIEW Simulation Module User Manual

A
Technical Support and 
Professional Services

Visit the following sections of the National Instruments Web site at 
ni.com for technical support and professional services:

• Support—Online technical support resources at ni.com/support 
include the following:

– Self-Help Resources—For immediate answers and solutions, 
visit the award-winning National Instruments Web site for 
software drivers and updates, a searchable KnowledgeBase, 
product manuals, step-by-step troubleshooting wizards, thousands 
of example programs, tutorials, application notes, instrument 
drivers, and so on.

– Free Technical Support—All registered users receive free Basic 
Service, which includes access to hundreds of Application 
Engineers worldwide in the NI Developer Exchange at 
ni.com/exchange. National Instruments Application Engineers 
make sure every question receives an answer.

• Training and Certification—Visit ni.com/training for 
self-paced training, eLearning virtual classrooms, interactive CDs, 
and Certification program information. You also can register for 
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house 
technical resources, or other project challenges, NI Alliance Program 
members can help. To learn more, call your local NI office or visit 
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact 
your local office or NI corporate headquarters. Phone numbers for our 
worldwide offices are listed at the front of this manual. You also can visit 
the Worldwide Offices section of ni.com/niglobal to access the branch 
office Web sites, which provide up-to-date contact information, support 
phone numbers, email addresses, and current events.



© National Instruments Corporation G-1 LabVIEW Simulation Module User Manual

Glossary

B

BDF Backwards difference formula. Also known as Gear’s Method.

C

CGD Common Graph Description. The format the Simulink Translator uses to 
store each system, subsystem, block, and line from the Simulink model.

continuous model Dynamic system model used to represent real-world signals that vary 
continuously with time. A continuous model is characterized by differential 
equations.

D

direct feedthrough Relationship between a function input and a function output in which the 
function uses the input at the current step to calculate the output at the 
current step.

discrete model Dynamic system model used to represent signals that are sampled in time 
at discrete intervals. A discrete model is characterized by difference 
equations.

distributed parameter 
model

Physical model that can be described by partial differential equations.

dynamic system System whose behavior varies with time.

E

empirical modeling Modeling technique in which you use experimental data to define a system 
model.



Glossary

LabVIEW Simulation Module User Manual G-2 ni.com

F

feedback cycle Cycle in which data flow originates from an output of a function or 
subsystem and terminates as an input of the same function or subsystem.

G

global error Maximum difference between the solution the function computes and the 
exact solution.

H

HIL Hardware-in-the-loop. A simulation configuration in which you test 
a controller implementation with a software model of the plant.

I

indirect feedthrough Relationship between a function input and a function output in which the 
function does not use the input at the current step to compute the output at 
the current step.

L

linear model Model that obeys the principle of superposition.

local error Error introduced into the solution per time step.

lumped parameter 
model

Physical model described by an ordinary differential equation.

M

multi-step ODE 
solver

ODE solver that approximates the behavior of a model at time t + dt by 
taking into account the behavior of the model at a number of previous time 
steps.



Glossary

© National Instruments Corporation G-3 LabVIEW Simulation Module User Manual

N

nonlinear model Model that does not obey the principle of superposition.

O

ODE Ordinary differential equation.

order ODE solver characteristic that determines how much the error amount 
changes when you vary the step size.

P

parameters terminal Optional Simulation Loop terminal used to configure a cluster of 
simulation parameters for the enclosed diagram.

PECE Predict-evaluate-correct-evaluate.

physical modeling Modeling technique in which you use the laws of physics to define a system 
model.

R

RCP Rapid control prototype. A simulation configuration in which you test plant 
hardware with a software model of the controller.

S

simulation diagram LabVIEW diagram that allows you to use Simulation functions within a 
Simulation Loop or simulation subsystem. A simulation diagram, like other 
LabVIEW diagrams, has the following semantic properties:

• The order of operations is not completely specified by the user.

• The order of operations is implied by data interdependencies.

• A function may only execute after all necessary inputs have become 
available.

• Outputs are generated after a function completes execution.

Simulation Loop Loop that executes the simulation diagram over multiple time steps.



Glossary

LabVIEW Simulation Module User Manual G-4 ni.com

single-step ODE 
solver

ODE solver that approximates the behavior of a model at time t + dt by 
taking into account only the behavior of the model at time t.

step size Size of the interval of one time step.

stiff ODE solver ODE solver used to evaluate a stiff model.

stiff system System whose dynamics are described by widely varying time constants.

T

time step Interval from t to t + dt.

time-invariant model Model whose parameters do not change with time.

time-variant model Model whose parameters change with time.

V

variable step-size
ODE solver

ODE solver that adjusts the step size throughout the simulation to ensure 
that the per-step error remains at a given relative and absolute tolerance.


	LabVIEW Simulation Module User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions
	Related Documentation

	Chapter 1 Introduction to Modeling
	Modeling Dynamic Systems
	Determining Model Complexity
	Developing the Model
	Physical Modeling
	Lumped versus Distributed Parameter Models
	Linear versus Nonlinear Models
	Time-Variant versus Time-Invariant Models
	Continuous versus Discrete Models

	Empirical Modeling


	Introduction to Ordinary Differential Equation Solvers
	Introduction to Rapid Control Prototyping and Hardware-in-the-Loop Configurations

	Chapter 2 Simulation Environment
	Simulation Diagram
	Simulation Loop
	Figure 2-1. Simulation Loop

	LabVIEW VIs, Functions, and Structures
	Feedback Cycles
	Figure 2-2. Feedback Cycles

	Setting Simulation Parameters
	Figure 2-3. Simulation Parameters Dialog Box
	Figure 2-4. Wiring the Set Diagram Parameters Function
	Simulation Time Parameters
	Continuous Solver Parameters
	Discrete Solver Parameters

	Setting Timing Parameters
	LabVIEW Real-Time Module for ETS Targets
	LabVIEW Real-Time Module for RTX Targets
	Off-Line Simulations


	Simulation Functions
	Figure 2-5. Configuration Dialog Box
	Discrete Systems Functions
	Displaying Dynamic Content on Expandable Nodes
	Figure 2-6. Displaying Dynamic Content on an Expandable Node
	Figure 2-7. Resizing Expandable Nodes

	Flipping Function Direction
	Figure 2-8. Horizontally Flipping the Gain Function

	Programmatically Stopping a Simulation

	Simulation Subsystems
	Creating a Simulation Subsystem
	Stand-Alone Subsystems
	Subsystems within a Simulation Diagram
	Linearizing a Subsystem

	Simulation Debugging

	Chapter 3 Real-Time Applications
	Determinism
	Case Study: Rapid Control Prototype and Hardware-in-the-Loop Simulation
	Off-Line Simulation
	Figure 3-1. Full System Simulation

	Rapid Control Prototype Implementation
	Figure 3-2. Rapid Control Prototype Implementation

	Hardware-in-the-Loop Implementation
	Figure 3-3. Hardware-in-the-Loop Implementation

	Discrete Behavior


	Chapter 4 Ordinary Differential Equation Solvers
	Simulation Discontinuities
	ODE Solver Accuracy and Order
	Variable Step-Size versus Fixed Step-Size ODE Solvers
	Single-Step versus Multi-Step ODE Solvers
	Stiff ODE Solvers
	LabVIEW Simulation ODE Solvers

	Chapter 5 Simulink Translator
	Converting Simulink Models into LabVIEW Code
	Common Warnings

	Appendix A Technical Support and Professional Services
	Glossary
	B-E
	F-M
	N-S
	T-V




